

DPP - 4 (Waves)

Video Solution on Website:-

Video Solution on YouTube:-

https://physicsaholics.com/home/courseDetails/91
https://youtu.be/klj7SGYgCMM

Written Solution on Website:-

Q 1. Equation of a stationary wave is given by
(a) $y=A \sin (k x-\omega t)$
(b) $y=2 A \sin (k x) \cos (\omega t)$
(c) $y=A \cos 2 \pi\left(k x-\frac{t}{T}\right)$
(d) $y=A \cos \left(\frac{2 \pi t}{\mathrm{I}}\right)$

Q 2. The standing waves set upon a string are given by $y=4 \sin \left(\frac{\pi x}{12}\right) \cos (52 \pi t)$. If x and y are in centimeters and t is in seconds, what is the amplitude of the particle at $x=2$ cm ?
(a) 12 cm
(b) 4 cm
(c) 2 cm
(d) 1 cm

Q 3. Standing waves cannot be produced:
(a) on a string clamped at both ends
(b) on a string clamped at one end and free at the other
(c) when incident wave gets reflected from a wall
(d) when two identical waves with a phase difference of π are moving in the same direction

Q 4. The equation of a stationary wave in a medium is given as $y=\sin \omega t \cos k x$. The length of a foop in fundamental mode is
(a) $\frac{\pi}{2 K}$
(b) $\frac{\pi}{K}$
(c) $\frac{2 \pi}{K}$
(d) $\frac{K}{\pi}$

Q 5. A standing wave having 3 nodes and 2 antinodes is formed between two atoms having a distance $1.21 \AA$ between them. The wavelength of the standing wave is
(a) $1.21 \AA$
(b) $3.63 \AA$
(c) $4.48 \AA$
(d) $5.86 \AA$

Q 6. A 20 cm long string, having a mass of 1.0 g , is fixed at both the ends. The tension in the string is 0.5 N . The string is set into vibrations using an external vibrator of frequency 100 Hz . Find the separation (in cm) between the successive nodes on the string.

(a) 10 cm
(b) 20 cm
(c) 5 cm
(d) 15 cm

Q 7. One end of a taut string of length 3 m along the x axis is fixed at $\mathrm{x}=0$. The speed of the waves in the string is $100 \mathrm{~m} / \mathrm{s}$. The other end of the string is vibrating in

the y direction so that stationary waves are set up in the string. The possible waveform(s) of these stationary waves is (are)
(a) $y(t)=A \sin \frac{\pi x}{6} \cos \frac{50 \pi t}{6}$
(b) $y(t)=A \sin \frac{\pi x}{3} \cos \frac{100 \pi t}{3}$
(c) $y(t)=A \sin \frac{5 \pi x}{6} \cos \frac{250 \pi t}{3}$
(d) $y(t)=A \sin \frac{5 \pi x}{2} \cos 50 \pi t$

Q 8. A standing wave on a string is given by $y=(4 \mathrm{~cm}) \cos \pi x \sin 50 \pi t$, where x is in meters and t is in seconds. The velocity of the string section at $\mathrm{x}=\frac{1}{3} \mathrm{~m}$ at $\mathrm{t}=\frac{1}{5} \mathrm{~s}$ is:
(a) zero
(b) $\pi \mathrm{m} / \mathrm{s}$
(c) $840 \pi \mathrm{~m} / \mathrm{s}$
(d) none of these

Q 9. A stretched string is 1 m long. Its liner density is $0.5 \mathrm{gm} / \mathrm{m}$. It is stretched with a force of 20 N . If plucked at a distance of 25 cm from one end, the frequency of the tone emitted by it is
(a) 100 Hz
(b) 200 Hz
(c) 300 Hz
(d) 400 Hz

Q 10. If $\mathrm{n}, 2 \mathrm{n}, 3 \mathrm{n}$ are the fundamental frequencies of the three segments into which a string is divided by placing required number of bridges below it. If n_{0} is the fundamental frequency of the string, then
(a) $n_{0}=3 n$
(b) $n_{0}=6 n$
(c) $n_{0}=\frac{3 n}{5}$
(d) $n_{0}=\frac{6 n}{11}$

Q 11. The second harmonic for a standing wave in a string fixed at both the ends is 50 Hz . What will be its sth harmonic?
(a) 50 Hz
(b) 150 Hz
(c) 175 Hz
(d) 125 Hz

Q 12. In sonometer experiment, the bridges are separated by a fixed distance. The wire which is slightly elastic, emits a tone of frequency ' n ' when held by tension ' T '. If the tension is increased to ' $4 \mathrm{~T}^{\prime}$, the tone emitted by the wire will be of frequency
(a) n
(b) 2 n
(c) Slightly greater than $2 n$
(d) Slightly less than n

Q 13. The length of the wire between two ends of a sonometer is 100 cm . What should be the (in cm) of two bridges below the wire so that the three segments of the wire have their fundamental frequencies in the ratio 1:3:5
(a) $\frac{1500}{23}, \frac{2000}{23}$
(b) $\frac{1500}{23}, \frac{500}{23}$
(c) $\frac{1500}{23}, \frac{300}{23}$
(d) $\frac{300}{23}, \frac{1500}{23}$

Q 14. Length of sonometer wire stretched between two points is 105 cm . Two bridges are kept between two ends so that sonometer wire is divided into three parts whose fundamental frequencies are in ratio of 1:3:15. The lengths of three parts are:
(a) $5 \mathrm{~cm}, 20 \mathrm{~cm}, 80 \mathrm{~cm}$
(b) $20 \mathrm{~cm}, 35 \mathrm{~cm}, 50 \mathrm{~cm}$
(c) $25 \mathrm{~cm}, 35 \mathrm{~cm}, 45 \mathrm{~cm}$
(d) $75 \mathrm{~cm}, 25 \mathrm{~cm}, 5 \mathrm{~cm}$

Q 15. Which of the following cannot be the frequency of vibration of 20 cm length of a sonometer wire (linear density is $0.0294 \mathrm{gm} / \mathrm{cm}$) under a tension 3 kg wt is?
(a) 750 Hz
(b) 500 Hz
(c) 250 Hz
(d) 125 Hz

Q 16. Calculate the fundamental frequency of a sonometer wire of length 20 cm , tension 25 N , cross sectional area $10^{-2} \mathrm{~cm}^{2}$ and density of material $=10^{4} \mathrm{~kg} / \mathrm{m}^{3}$
(a) 200 Hz
(b) 120 Hz
(c) 125 Hz
(d) 75 Hz

Q 17. A stretched string is vibrating in the second overtone, then the number of nodes and anti-nodes between the ends of the string are respectively
(a) $3 \& 4$
(b) $4 \& 3$
(c) $2 \& 3$
(d) $3 \& 2$

Q 18. The first overtone of a stretched string of given length is 320 Hz . The first harmonic is
(a) 320 Hz
(b) 640 Hz
(c) 160 Hz
(d) 480 Hz

Q 19. An elastic string of length 2 m is fixed at its end. The string starts to vibrate in third overtone with a frequency 1200 Hz . The ratio of frequency of lower (first)overtone and fundamental is
(a) 1
(b) 2
(c) 3
(d) 4

Answer Key

Q. 1 b	Q. 2 c	Q. 3 d	Q. 4 b	Q. 5 a
Q. 6 c	Q. 7 c	Q. 8 b	Q. 9 b	Q. 10 d
Q. 11 d	Q. 12 c	Q. 13 a	Q. 14 d	Q. 15 d
Q. 16 c	Q. 17 b	Q. 18 c	Q. 19 b	

